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Abstract—Total syntheses of (+)-o- and B-acorenols and (4)-a- and B-epi-acorenols, spiro[4.5]decane sesquiterpenes, isolated from
the western Australian sandalwood oil, have been accomplished employing a combination of Ireland ester Claisen rearrangement

and RCM reactions for an efficient construction of the spiro[4.5]decane present in acoranes.

© 2007 Elsevier Ltd. All rights reserved.

Australian sandalwood oil obtained from Santalum spic-
atum wood, butts and roots is considered very important
in the perfumery industry due to its interesting odour
properties. Recently,! Braun and co-workers reported
the isolation of a-acorenol 1, B-acorenol 2, a-epi-acore-
nol 3 and B-epi-acorenol 4 from the western Australian
sandalwood oil. Although, a-acorenol 1 and B-acorenol
2 have been known since 1970, and were first isolated
from the wood of Juniperus rigida® and subsequently
from various essential oils, this isolation of a-epi-acore-
nol 3 and B-epi-acorenol 4 is the first from natural
sources. The structures of the epi-acorenols 3 and 4 were
established from their spectral data in comparison with
those of a- and B-acorenols 1 and 2. Acoranes were the
first sesquiterpene natural products to be isolated from
Nature containing a spiro[4.5]decane carbon frame-
work.? a-Acorenol 1 was proved to be the biogenetic
precursor of the tricyclic sesquiterpenes cedranoids, for
example, a-cedrene 5. In contrast to other acoranes, so
far only three research groups have reported the synthe-
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sis of o- and B-acorenols 1 and 2.# Herein, we describe
the efficient syntheses of all four acorenols 1-4, starting
from cyclohexane-1,4-dione 6 employing a combination
of an Ireland ester Claisen rearrangement and ring-clos-
ing metathesis (RCM) as key steps for the efficient con-
struction of the spiro[4.5]decane.

As depicted in Scheme 1, it was contemplated that the
RCM reaction® of diene 7 would generate spiro[4.5]dec-
ane system 8, which would be further elaborated into the
acorenols and epi-acorenols 1-4. The Ireland ester Cla-
isen rearrangement® of pentenoate 9 was considered
appropriate for the generation of diene 7 containing
the quaternary carbon atom. Ester 9 could be obtained
from cyclohexane-1,4-dione 6 via ester 10.

The synthetic sequence starting from cyclohexane-1,4-
dione 6 is depicted in Scheme 2. A controlled Horner—
Wadsworth-Emmons reaction of dione 6 with sodium
hydride and triethyl phosphonopropionate generated

4 (B-epi-acorenol) 5 (o-cedrene)

* Corresponding author. Tel.: +91 80 22932215; fax: +91 80 23600529; e-mail: ask@orgchem.iisc.ernet.in

0040-4039/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.

d0i:10.1016/j.tetlet.2007.07.163


mailto:ask@orgchem.iisc.ernet.in

A. Srikrishna, R. R. Babu | Tetrahedron Letters 48 (2007) 6916-6919 6917

\/\/L COOR

COOR
COOR | |
jr— jr— jr— jr—
(0] (0]
8 6
X= protectmg group
Scheme 1.
(0]
CO,Et COEt OH o)
a b c d |
— — — —
82% 96% 97% 94%
(0] O O
O -/ _/

2]
[y
-y
=y
N

O g

g\ 00%

CO,Me

89%
o
14

1
m
G
lu“ Q _otMm
COgMe Cl pr @
Grubbs Il catalyst CO,Me e
47 -
98% 9%5% | O O
/
CO2Me . IlCOzMe
.
90%
(4:1)
5

Scheme 2. Reagents and conditions: (a) (EtO),P(O)CH(Me)CO,Et, NaH, THF, 0 °C — rt, 3 h; (b) (CH,OH),, PTSA, C¢Hg, reflux (Dean-Stark),
4 h; (¢) LiAlHy, Et,0, —70 — —50 °C, 2 h; (d) DCC, DMAP, CH,=—CH(CH,),CO,H, CH,Cl,, rt, 5 h; (e) (i) LDA, THF, TMSCI, NEt;, —70 °C,
30 min; rt, 4 h; reflux, 5 h; (ii) dil. HCI, 40 min; (iii) CH,N,, Et,0, 0 °C, 30 min; (f) Grubbs’ II catalyst (3 mol %), C¢Hs, reflux, 3 h; (g) 10% Pd/C, H,
(1 atm.), MeOH, rt, 1 h; (h) Ph;PTCH;Br—, ‘AmO "K', C¢Hg, 1t, 1 h; (i) NaOMe, MeOH, reflux, 8 h.

keto ester 11 in 82% yield. Prior to the reduction of the
o,B-unsaturated ester in keto ester 11 to an allyl alcohol,
the keto group was protected as an ethylene ketal by
refluxing with 1,2-ethanediol and a catalytic amount of
p-toluenesulfonic acid (PTSA) in benzene using a
Dean-Stark trap to furnish ketal ester 12 in 96% yield.
Regioselective reduction with lithium aluminum hydride
(LAH) in ether at low temperature transformed ester 12
into allyl alcohol 13 in 97% yield. Allyl alcohol 13 was
then coupled with pent-4-enoic acid using dicyclohexyl-
carbodiimide (DCC) and 4-N,N-dimethylaminopyridine
(DMAP) in methylene chloride to generate the Ireland-
Claisen rearrangement precursor ester 9 in 94% yield.
Generation of the TMS enol ether of ester 9 with
LDA, trimethylsilyl chloride and triethylamine in THF
at —70 °C followed by refluxing the reaction mixture
for 5h resulted in the Ireland ester Claisen rearrange-
ment. Hydrolysis of the reaction mixture with dilute
hydrochloric acid followed by esterification with ethe-
real diazomethane furnished keto ester 7 in 95% yield,

whose structure was deduced from its spectral data.’
RCM reaction of diene 7 with 3 mol % of Grubbs’ sec-
ond generation catalyst in refluxing benzene for 3 h
cleanly furnished spiro compound 8 in 98% yield, whose
structure was deduced from its spectral data.” Before
introducing the methyl group into the cyclohexane ring,
the olefin in the cyclopentene moiety in keto ester 8 was
hydrogenated in a highly stereoselective manner in
methanol at one atmosphere pressure of hydrogen by
employing 10% palladium over charcoal as the catalyst
to generate cis-ester 14 in quantitative yield. Wittig
methylenation of keto ester 14 with methylenetriphenyl-
phosphorane in benzene at room temperature furnished
ester 15 in 89% yield. For the generation of a precursor,
which was suitable for the synthesis of o- and B-acore-
nols 1 and 2, the ester group in 15 was equilibrated in
refluxing methanol with sodium methoxide to furnish
a 1:4 mixture of cis- and trans-esters 15 and 16 in 90%
yield, which were separated by column chromatography
on silica gel.”



6918 A. Srikrishna, R. R. Babu | Tetrahedron Letters 48 (2007) 69166919

95%

7 "GO Me T
, / b | OH
7, 'COMe N 86% S~
a 17a 1
vy

16 //"//002Me

COzMe
CO,Me “85%
90%
COZMe
84%

Scheme 3. Reagents and conditions: (a) PTSA, CH,Cl,, rt, 6 h;
(17a:17b 1:1); (18a:18b 4:1); (b) MeMgl, Et,0, rt, 3 h.

The 1,4-cis- and trans-esters 15 and 16 were then trans-
formed into epi-acorenols 3 and 4 and into acorenols 1
and 2, respectively, in two steps, as shown in Scheme
3. Thus, isomerisation of the olefin in ester 16 with
PTSA in methylene chloride at room temperature fur-
nished a 1:1 mixture of esters 17a and 17b in 95% yield,
which were separated by column chromatography on
silica gel. Grignard reaction of esters 17a and 17b with
an excess of methylmagnesium iodide furnished o-acore-
nol 1 and B-acorenol 2, respectively.” In a similar man-
ner, PTSA isomerised the olefin in ester 15 to furnish a
4:1 mixture of esters 18a and 18b in 90% yield, which
were separated by column chromatography on silica
gel. Grignard reaction of esters 18a and 18b with an ex-
cess of methylmagnesium iodide furnished a-epi-acore-
nol 3 and B-epi-acorenol 4, respectively.” The structure
of a-acorenol 1 was conﬁrmed by comparison with the
"H and ">C NMR spectra of the natural sample, and
similarly the structures of B-acorenol 2, a-epi-acorenol
3 and Bepz acorenol 4 were conﬁrmed by comparing
their '"H NMR spectral data with those of natural
samples.!

In conclusion, we have accomplished an efficient total
syntheses of spiro sesquiterpenes acorenols 1-4. A com-
bination of an Ireland ester Claisen rearrangement and
RCM reactions was employed for the efficient construc-
tion of spiro[4.5]decane present in the acorenols. In the
present sequence, the key precursor of the acorenols, the
spiro[4.5]decanecarboxylate 14, was obtained in an over-
all yield of 67%, in seven steps starting from cyclohex-
ane-1,4-dione 6.
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(3H, d, J 7.2 Hz); *C NMR (75 MHz, CDCl; + CCly): &
176.1 (C) 148.8 (C), 107.0 (CH,), 51.2 (CHj), 50.1 (CH),
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48.4 (C), 40.0 (CH), 33.4 (CH,), 31.7 (CH»), 31.5 (CH,),
31.3 (CH,), 31.1 (CH,), 25.6 (CH,), 14.6 (CH3); HRMS:
mfz caled for C4H,,0,Na (M+Na): 245.1517. Found:
245.1523. For a-acorenol 1: IR (neat): Vmax/cm ' 3479; TH
NMR (300 MHz, CDCl; + CCly): 6 5.40 (1H, br s), 2.35
(1H, d, J 17.4 Hz), 2.10-1.05 (12H, m), 1.66 (3H, s), 1.21
(6H, s), 0.86 (3H, d, J 6.6 Hz); '*C NMR (75 MHz,
CDCIl; + CCly): ¢ 135.0 (C), 121.4 (CH), 73.7 (C), 54.9
(CH), 45.1 (C), 41.8 (CH), 31.7 (CH3), 30.7 (CH,), 30.3
(CH,), 29.3 (CH,), 28.2 (CH3), 28.1 (CH,), 26.2 (CH,), 23.5
(CH3), 15.1 (CH3); HRMS: m/z caled for C;sH,sONa
(M+Na): 245.1881. Found: 245.1880. For B-acorenol 2: IR
(neat): Vmax/em ™' 3459; '"H NMR (300 MHz, CDCl; +
CCly): 0 5.31 (1H, br s), 2.35 (1H, d, J 16.8 Hz), 2.20-1.05
(12H, m), 1.60 (3H, s), 1.31 (3H, s), 1.25 (3H, s), 0.83 (3H,
d, J 6.9 Hz); '3C NMR (75 MHz, CDCl; + CCly): 6 133.3
(C), 121.8 (CH), 73.8 (C), 57.6 (CH), 44.5 (C), 41.1 (CH),
33.6 (CH,), 31.9 (CH,), 31.2 (CH3), 30.7 (CHs3), 30.2 (CH,),
27.8 (CH,), 26.1 (CH,), 23.5 (CH3), 18.2 (CH3); HRMS:

mfz caled for C;sH,sONa (M+Na): 245.1881. Found:
245.1877. For a-epi-acorenol 3: IR (neat): Ymax/cm ! 3468;
'"H NMR (300 MHz, CDCl; + CCly): d 5.39 (1H, brs), 2.46
(1H, d, J 17.7 Hz), 2.05-1.49 (10H, m), 1.63 (3H, s), 1.50—
1.16 (2H, m), 1.24 (3H, s), 1.23 (3H, s), 0.86 (3H, d, J
6.6 Hz); '*C NMR (75 MHz, CDCl; + CCl,): 6 133.8 (C),
122.1 (CH), 73.4 (C), 60.5 (CH), 44.6 (C), 44.3 (CH), 37.8
(CH,), 32.0 (CHs;), 31.5 (CH»), 29.0 (CHs;), 28.9(CH,), 27.7
(CH»), 27.1 (CH,), 23.5 (CHj3), 17.8 (CH3); HRMS: m/z
calcd for CsH,sONa (M+Na): 245.1881. Found: 245.1885.
For B-epi-acorenol 4: IR (neat): vya/cm ™' 3466; 'H NMR
(300 MHz, CDCl; + CCly): 6 5.28 (1H, br s), 2.20-1.50
(12H, m), 1.62 (3H, s), 1.28 (3H, s), 1.23 (3H, s), 0.93 (3H,
d, J 7.2Hz), 0.88-0.78 (1H, m); '*C NMR (75 MHz,
CDCI; + CCly): ¢ 133.7 (C), 121.3 (CH), 73.4 (C), 61.3
(CH), 44.9 (C), 42.7 (CH), 40.9 (CH,), 31.5 (CH;), 30.8
(CH,), 29.8 (CH3), 29.2 (CH»), 26.3 (CH»), 24.9 (CH,), 23.5
(CH3), 16.0 (CH3); HRMS: m/z caled for C;sH,sONa
(M+Na): 245.1881. Found: 245.1870.
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